
Evaluating Simple Fully Automated Heuristics for

Adaptive Constraint Propagation

Anastasia Paparrizou and Kostas Stergiou

Department of Informatics and Telecommunications Engineering

University of Western Macedonia, Kozani, Greece

{apaparrizou, kstergiou}@uowm.gr

Abstract—Despite the advancements in constraint propagation
methods, most CP solvers still apply fixed predetermined prop-
agators on each constraint of the problem. However, selecting
the appropriate propagator for a constraint can be a difficult
task that requires expertise. One way to overcome this is
through the use of machine learning. A different approach uses
heuristics to dynamically adapt the propagation method during
search. The heuristics of this category proposed in [1] displayed
promising results, but their evaluation and application suffered
from two important drawbacks: They were only defined and
tested on binary constraints and they required calibration of
their input parameters. In this paper we follow this line of work
by describing and evaluating simple, fully automated heuristics
that are applicable on constraints of any arity. Experimental
results from various problems show that the proposed heuristics
can outperform a standard approach that applies a preselected
propagator on each constraint resulting in an efficient and robust
solver.

Index Terms—constraint programming; search; constraint
propagation;

I. INTRODUCTION

Despite the advances in Constraint Programming (CP), there

are still some important obstacles that prevent it from becom-

ing even more widely known and applied. One significant

such obstacle is the rigidness of CP solvers, in the sense

that decisions about algorithms and heuristics to be used on a

specific problem are taken prior to search during the modeling

process and cannot change during search.

Concerning constraint propagation in particular, which is

at the core of CP’s strength and the focus of this paper,

the decision on which algorithm to select for the different

constraints of the CP model is either predetermined or placed

on the shoulders of the user/modeler. For instance, the modeler

may select to propagate the alldifferent constraints in a prob-

lem using a domain consistency algorithm. However, during

search it may turn out that domain consistency achieves little

extra pruning compared to bounds consistency. Unfortunately,

standard CP solvers do not allow to change the decisions taken

prior to search “on the fly”. Hence, it will not be possible

to automatically switch to a bounds consistency propagator

during search.

This research has been co-financed by the European Union (European
Social Fund ESF) and Greek national funds through the Operational Program
”Education and Lifelong Learning” of the National Strategic Reference
Framework (NSRF) - Research Funding Program: Heracleitus II. Investing
in knowledge society through the European Social Fund.

To overcome these difficulties the CP research community

has followed various different approaches. The most common

one is the use of information such as the arity of the constraints

and the complexity of propagation algorithms to evaluate the

cost of the available propagators. Then these are typically

ordered in increasing cost (although other factors may also

play a part). This approach is analyzed, for example, in [2]

and it is followed by many state-of-the art solvers such as

Gecode and Choco. A drawback of this approach is that it

does not take into account the actual effects of propagation

during search.

Another approach concerns the use of machine learning

(ML) methods for the automatic selection of constraint prop-

agation methods (as well as tuning other parameters of a

CP solver). Although some ML-based methods for dynamic

parameter tuning during search do exist [3], most approaches

focus on the easier problem of static tuning prior to search

(e.g. [4], [5]). Hence, the use of ML may alleviate the burden

of user involvement in parameter tuning, and the selection

of propagation methods (propagator) in particular, but the

rigidness displayed by existing solvers still remains.

As an alternative to both of the above approaches, heuristic

methods for the automatic tuning of constraint propagation

have also been recently proposed [6], [1]. Their advantage is

twofold: they are inexpensive to apply, and they are perfectly

suited to a dynamic application because they exploit informa-

tion concerning the actual effects of propagation during search.

In this paper we are concerned with the heuristics proposed in

[1] for dynamically adapting the propagation method used on

the constraints of the given problem. Although this approach

displayed quite promising results, it suffered by important

limitations. First, the description as well as the evaluation of

the heuristics was limited to binary constraints. And second,

their successful application depended on user interference for

careful parameter tuning. The former limits the applicability

of the heuristics while the latter severely compromises their

autonomicity and puts burden on the shoulders of the users.

In this paper we confront and remedy both these problems.

First, we evaluate two simple heuristics for constraints of any

arity that allow to dynamically switch between two different

propagators on individual constraints in a fully automated

way. The first (resp. second) heuristic applies a standard

propagator on a constraint (e.g. domain consistency) until the

constraint causes a domain wipeout - DWO (resp. at least one

2012 IEEE 24th International Conference on Tools with Artificial Intelligence

1082-3409/12 $26.00 © 2012 IEEE

DOI 10.1109/ICTAI.2012.123

880

2012 IEEE 24th International Conference on Tools with Artificial Intelligence

1082-3409/12 $26.00 © 2012 IEEE

DOI 10.1109/ICTAI.2012.123

880

value deletion). Then, in the immediately following revision

of the constraint, a stronger local consistency (e.g. SAC) is

applied. For the following revision we revert back to the

standard propagator and this is repeated throughout search.

These heuristics allow to exploit the filtering power offered

by strong propagation methods without incurring severe cpu

time penalties since they invoke the strong propagator very

sparsely. And importantly, this is achieved without requiring

any user involvement.

We also propose and evaluate refinements of the above

heuristics that, while still being fully automated, achieve better

performance by targetting the use of the strong propagator on

variables that are more likely to be filtered. Also, we evaluate

the heuristics using different methods as the strong propagator.

Overall, our experimental results demonstrate that the simple

heuristics we employ outperform the rigid method that applies

a standard propagator throughout search, resulting in most

robust solvers.
II. BACKGROUND

A Constraint Satisfaction Problem (CSP) is defined as a

tuple (X ,D, C) where: X = {x1, . . . , xn} is a set of n
variables, D = {D(x1), . . . , D(xn)} is a set of finite domains,

one for each variable, with maximum cardinality d, and

C = {c1, . . . , ce} is a set of e constraints. Each constraint

c is a pair (var(c), rel(c)), where var(c) = {x1, . . . , xm} is

an ordered subset of X , and the relation rel(c) is a subset of

the Cartesian product D(x1)× . . .×D(xm) that specifies the

allowed combinations of values for the variables in var(c).
Local consistencies are properties that are enforced on the

constraints of a problem so that infeasible values are located

and pruned. The most commonly used local consistency is

generalized arc consistency (GAC) or domain consistency. A

value ai ∈ D(xi) is GAC iff for every constraint c s.t. xi ∈
var(c) there exists a valid tuple τ ∈ rel(c) that includes the

assignment of ai to xi. In this case τ is called a support of

ai. A variable is GAC iff all its values are GAC. A problem is

GAC iff there is no empty domain in D and all the variables

in X are GAC.

Numerous local consistencies that are stronger than GAC

have been proposed. Some of these have shown promise (e.g.

SAC and maxRPWC) but in general they are all too expensive

to apply throughout search. Therefore, an important question

is how to best exploit their filtering power without paying a

high cpu time penalty. This paper tries to answer this question.

A value ai ∈ D(xi) is singleton arc consistent (SAC) iff

the problem derived from assigning ai to xi is GAC [7]. A

problem is SAC iff every value of every variable is SAC.

When applied, GAC and its weaker variants, such as Bounds

Consistency (BC), focus on one constraint at a time. In

contrast, some strong local consistencies exploit the fact that

very often constraints have two or more variables in common,

to achieve stronger pruning. One of the most promising con-

sistencies of this type is max Restricted PairWise Consistency

(maxRPWC) [8].

A value ai ∈ D(xi) is maxRPWC iff ∀cj ∈ C, where

xi ∈ var(cj), a has a support τ ∈ rel(cj) s.t. ∀cl ∈ C

(cl 6= cj), s.t. var(cj) ∩ var(cl) 6= ∅,∃τ ′ ∈ rel(cl), s.t.

τ [var(cj) ∩ var(cl)] = τ ′[var(cj) ∩ var(cl)] and τ ′ is valid.

In this case we say that τ ′ is a PW-support of τ . A variable

is maxRPWC iff all values in its domain are maxRPWC. A

problem is maxRPWC iff there is no empty domain in D and

all variables are maxRPWC.

III. ADAPTIVE PROPAGATOR SELECTION

Modern CP solvers offer an impressive array of specialized

constraint propagation algorithms that typically achieve GAC

or BC on specific types of constraints. However, typically

solvers follow one of the following patterns:

1) The choice of propagation algorithm for a specific con-

straint is made during the modeling process and cannot

change during search.

2) All the available propagators for a constraint are used,

in increasing order of cost, unless there is a theoretical

guarantee that a propagator cannot achieve extra pruning

(as discussed in [9], [10]).

A drawback of the second approach, which is more sophis-

ticated, is that even if a propagator’s cost can be accurately

predicted (which is not always true), the prediction of a

propagator’s impact is not nearly as straightforward. Schulte

and Stuckey concluded that an obvious way to further speed

up constraint propagation is to consider the estimated impact

for a propagator and not only its cost [2].

Exploring ways to achieve this, [1] proposed heuristics for

dynamically switching between a weak (W) and a strong

(S) propagator for individual constraints during search. The

motivation for these heuristics was based on the observation

that in structured problems propagation events (DWOs and

value deletions) caused by individual constraints are often

highly clustered. That is, they occur during consecutive or

very close revisions of the constraints. Hence, the intuition

behind the proposed heuristics is twofold. First to target the

application of the strong consistency on areas in the search

space where a constraint is highly active so that domain

pruning is maximized and dead-ends are encountered faster.

And second, to avoid using an expensive propagation method

when pruning is unlikely.

The following two heuristics generalize the main heuristics

of [1] to non-binary constraints in a straightforward and fully

automated way.

• Heuristic Hdwo monitors the revisions and DWOs caused

by the constraints in the problem. For any constraint c and

any variable xi ∈ var(c), each vi ∈ D(xi) is made W
unless the immediately preceding revision of c resulted in

the DWO of a variable in var(c). In this case the values

of D(xi) are made S.

• Heuristic Hdel monitors revisions and value deletions.

For any constraint c and any variable xi ∈ var(c), each

vi ∈ D(xi) is made W unless the immediately preceding

revision of c resulted in at least one value deletion from

the domain of a variable in var(c). In this case the values

of D(xi) are made S.

881881

A significant difference between Hdwo and Hdel and their

corresponding versions for binary constraints, called H1 and

H2 in [1], is that the latter required the manual setting of a

parameter l to optimize their performance. For any constraint

c this parameter determined the number of revisions after the

latest revision of c that caused a DWO (resp. value deletion)

during which S will be applied. In contrast, Hdwo and Hdel do

not use this parameter and as a result they are fully automated.

As reported in [1], the disjunctive combination of the two

basic heuristics that applies S whenever the conditions of

either of the heuristics is met, achieves particularly good

performance being more robust than individual heuristics.

However, given the definitions of Hdwo and Hdel here, their

disjunctive combination is pointless since it is equivalent to

applying Hdel. Hence, we do not consider it.

IV. EXPERIMENTS

In our experimental evaluation of the heuristics we have

considered GAC as the standard propagator W , given that

it is the most commonly used local consisteny. Since we

are interested in non-binary problems, we have considered

two strong local consistencies as the S propagators. Namely,

maxRPWC and SAC. All methods used the dom/wdeg heuris-

tic for variable ordering and lexicographic value ordering

under a binary branching scheme. The propagation queue was

variable-oriented (i.e. the elements of the queue are variables)

and was ordered in a FIFO manner. A cpu time limit of 6 hours

was set for all instances. All the evaluated heuristic methods

used the S propagator on all constraints for preprocessing.

The classes of problems we have considered include both

structured and random problems, some of which are specified

extensionally and others intensionally. These classes, which

are taken from C.Lecoutre’s XCSP repository and are com-

monly used in the CSP Solver Competition, are: random

and forced random, positive table, BDD, aim, pret, dubois,

chessboard coloration, Schurr’s lemma, modified Renault.

In the case of extensionally specified constraints we have

used the efficient algorithm of [11] for the implementation of

GAC. This is also the basis for the implementation of SAC

and maxRPWC. For the former, the implementation is straight-

forward. For the latter, we have used a simplified version of

the algorithm presented in [12]. In the case of intensionally

specified constraints we have used the generic algorithms

GAC2001/3.1 [13] and maxRPWC1 [8]. GAC2001/3.1 was

also the basis for the implementation of SAC.

In the following, we first evaluate Hdwo and Hdel using

maxRPWC as the strong propagator. Then we analyze the

performance of the heuristics (Hdwo in particular) to explain

their success. Finally, we propose and evaluate refinements of

the heuristics and give results from the use of SAC as the

strong propagator.

A. Evaluating the heuristics

In Table I we show the mean performance of Hdwo and

Hdel on all tested classes, measured in cpu time and nodes

explored. To put these results into perspective, we also give

results from: 1) an algorithm that propagates all constraints

using GAC throughout search, 2) an algorithm that propagates

all constraints using maxRPWC throughout search, and 3) the

Hdel heuristic implemented as in [1], with parameter l set to

10 (i.e. maxRWPC is applied for the 10 revisions following

a revision that deleted at least one value). We also report the

mean percentage (%) of constraint revisions where the strong

consistency (maxRPWC) was applied.

TABLE I
MEAN CPU TIMES (T) IN SECS, NODES (N), AND THE PERCENTAGE OF

CONSTRAINT REVISIONS (S) CARRIED OUT USING MAXRWPC. CPU TIMES

IN BOLD DEMONSTRATE THE FASTEST METHOD. A DASH (-) INDICATES

THAT THE METHOD WAS UNABLE TO SOLVE ALL INSTANCES WITHIN THE

TIME LIMIT.

Class GAC maxRPWC Hdwo Hdel Hdel 10

t 182 233 229 202 195

Rand-fcd n 131,745 59,245 161,247 95,576 54,316

s 0 100 1.1 24.8 73.3

t 220 333 221 236 270

Random n 151,039 79,771 154,657 105,944 72,353

s 0 100 1.1 24.9 73

t 1,629 3,947 2,233 1,984 3,109

Positive n 47,073 15,142 45,108 26,425 14,747

table-8 s 0 100 3 26.5 77.5

t - 643 647 667 691

Positive n - 0 0 0 0

table-10 s - 100 100 100 100

t 9.5 2.4 3.9 2.8 1.6

Aim n 1,324,118 217,459 468,262 302,870 127,723

s 0 100 2.6 20.3 53.2

t 7,771 6.4 3.9 4.2 5.1

BDD n 36,804 10 10 10 10

s 0 100 24.5 56.9 69.2

t 4.6 37.7 5.5 8.2 12.8

Chess- n 57,024 43,644 66,177 65,609 59,826

board s 0 100 2.7 6 26.2

t 63 100 62 73 87.2

Schurr’s n 559,971 524,909 549,868 552,197 562,221

lemma s 0 100 1.4 17.1 59.8

t 934 878 925 1,282 912

Dubois n 175,325,461 144,632,439 161,619,009 225,836,708 163,285,042

s 0 100 1.9 41.7 98.35

t 46 46 48 50 47

Pret n 37,017,710 37,017,710 37,017,710 37,017,710 37,017,710

s 0 100 3.2 42.4 98.7

t 118 181 126 143 167

Renault n 801 334 521 413 328

s 0 100 12 25.5 83

The results given in Table I demonstrate the efficacy of

the studied fully automated heuristics. Although they do not

achieve the best mean results on any class (with the exception

of BDD), one or both of the heuristics achieve the best

performance on several individual instances. But more impor-

tantly, the heuristics succeed in striking a balance between

the performance of GAC and maxRPWC. Specifically, in

problems where GAC thrases (positive table-10 and BDD),

the heuristics follow maxRPWC in solving the problems with

little or no search. In problems where GAC is clearly better

than maxRPWC (chessboard coloration, positive table-8, and

random) the performance of the heuristics is closer to GAC

making them clearly superior to maxRPWC. In a case where

the opposite occurs, i.e. maxRWPC is better than GAC (aim),

the heuristics follow maxRPWC making them superior to

GAC. In other cases, where GAC and maxRWPC are closely

matched, the performance of the heuristics typically lies in

between GAC and maxRPWC.

Comparing Hdwo to Hdel we can note that there are no

882882

significant differences in their performance. This occured not

only with respect to their mean performance but, largely, with

respect to individual instances as well. What is interesting is

that Hdwo, which is slightly better overall, achieves its results

with only few invocations of the strong propagator as the

percentages s show, with positive table-10 and BDD being

exceptions to this.

Finally, comparing Hdel to its parameterized version with

l set to 10, we can note that the fully automated version is

generally preferable. It achieves better mean performance on

7 out of the 11 classes and it is not significantly outperformed

in the other 4. This hints at a particular importance of the

revisions that immediately follow a propagation event in terms

of the likelihood of another propagation event occuring.

B. Are revisions after DWOs important?

In this section we investigate the reason for the success of

Hdwo. In Table II we record ratios concerning value deletions

to demonstrate the effects of the calls to S in revisions

immediately following a revision that caused a DWO. We

have picked an indicative instance from each class. Ddwo

is the number of revisions that caused value deletions and

immediately follow a revision that caused a DWO. D is

the number of all revisions that caused deletions. Rdwo is

the number of revisions that immediately follow a revision

that caused a DWO. Table II gives the ratios Ddwo/D and

Ddwo/Rdwo for GAC, maxRPWC, and Hdwo.

TABLE II
PERCENTAGES OF REVISIONS THAT CAUSED VALUE DELETIONS AFTER A

PREVIOUS DWO TO ALL REVISIONS THAT CAUSED DELETIONS

(Ddwo/D) AND REVISIONS THAT CAUSED VALUE DELETIONS AFTER A

PREVIOUS DWO TO ALL REVISIONS EXECUTED AFTER A PREVIOUS DWO
(Ddwo/Rdwo) FROM REPRESENTATIVE INSTANCES.

Class Instance GAC maxRPWC Hdwo

Ddwo/D 0.55 0.59 1.01

Rand-fcd Ddwo/Rdwo 9.8 12.15 17.98

Ddwo/D 0.5 0.58 1.01

Random Ddwo/Rdwo 8.95 11.7 19.01

Ddwo/D 1.48 2.95 4.92

Positive table-8 Ddwo/Rdwo 3.54 6.24 12.88

Ddwo/D 1.73 1.08 2.01

Aim Ddwo/Rdwo 14.61 2.27 10.24

Ddwo/D 1.37 2.49 2.75

Chessboard Ddwo/Rdwo 3.46 5.85 7.53

Ddwo/D 0.02 0.92 0.01

Schurr’s lemma Ddwo/Rdwo 0.28 6.3 0.21

Ddwo/D 0.22 0.62 0.11

Dubois Ddwo/Rdwo 6.65 8.93 7.28

Ddwo/D 0.77 0.77 0.77

Pret Ddwo/Rdwo 13.58 13.58 13.58

Ddwo/D 2.26 2.31 2.31

Renault Ddwo/Rdwo 3.58 4.18 4.14

Hdwo has the highest percentages, compared to GAC and

maxRPWC, for both ratios shown in Table II. Especially on

Random, Random-fcd and Positive table we observe that the

numbers for Hdwo are more than two times higher, showing

that applying a strong consistency after a DWO can

increase the likelihood of value pruning. For the rest of the

classes the advantage is less obvious for two reasons: either

because the strong consistency cannot offer extra pruning (i.e.

pret) or because it is applied very few times (i.e. Chessboard

coloration). Note that no instance from the BDD class is

included. This is because in these problems very few con-

straints give non-zero results for D when maxRPWC or Hdwo

is applied (in contrast to GAC). That is, very few constraints

are active during the (very short) search process with these

methods.

V. REFINING THE HEURISTICS

Heuristics Hdwo and Hdel apply the strong propagator S on

all variables involved in a constraint if one of these variables

suffered a DWO (resp. value deletion) in the previous revision

of the constraint. This may incur unnecessary invocations of

S that only increase the cpu time overhead without offering

any filtering. The following heuristics are refinements of Hdwo

and Hdel that try to improve on this by targetting the use of

the strong propagator on variables that are more likely to be

filtered.

• Heuristic Hv
dwo monitors the revisions of constraints and

the DWOs of the variables’ domains. For any constraint

c and any variable xi ∈ var(c), each vi ∈ D(xi) is

made W unless the immediately preceding revision of c
resulted in the DWO of D(xi). In this case the values of

D(xi) are made S.

• Heuristic Hv
del monitors the revisions of constraints and

the value deletions from the variables’ domains. For

any constraint c and any variable xi ∈ var(c), each

vi ∈ D(xi) is made W unless the immediately preceding

revision of c resulted in at least one value deletion from

D(xi). In this case the values of D(xi) are made S.

Hv
dwo and Hv

del restrict the application of the strong propa-

gator on variables that suffered a propagation event (DWO

or value deletion) in the immediately preceding constraint

revision as opposed to all variables in the constraint’s scope.

The intuition behind this is that such variables are more likely

to suffer a DWO or value deletion(s) again, especially in hard

parts of the search space. The experimental results given below

indicate that this is true since the effects of restricting the

invocations of S on the search effort are not significant while

cpu times improve.

Table III presents mean results from all tested instances.

Columns Hv
del and Hv

dwo give results from the use of maxR-

PWC as the strong propagator, while column S-Hv
dwo gives

results from the use of SAC. The last column, called Hybrid,

gives results from a simple heuristic method that applies

SAC and maxRPWC alternatively. Specifically, maxRPWC

is selected as the S propagator when a constraint intersects

with another constraint on more than one variable and SAC

otherwise. Note that maxRPWC cannot achieve any extra

filtering compared to GAC when constraints intersect on

exactly one variable [8], while SAC can. Results from Table

III are similar to those from Table I in the sense that again the

heuristic methods Hv
dwo and Hv

del achieve a balance between

GAC and maxRWPC.

On the other hand, heuristic S-Hv
dwo is not as successful.

Although it often manages to cut down the number of node

visits considerably (the two random classes and aim), this is

883883

not reflected to cpu times (with the exception of aim) meaning

that singleton checks are quite expensive. In addition, there are

many classes where S-Hv
dwo does not manage to save search

effort compared to GAC. However, the performance of S-Hv
dwo

is still close to that of GAC, being sometimes better, and it is

by far superior to the performance of an algorithm that applies

SAC on all variables throughout search1.

TABLE III
AVERAGE CPU TIMES (T) IN SECS, NODES (N) AND THE PERCENTAGE OF

THE STRONG CONSISTENCY (S) FROM ALL CLASSES.

Class GAC Hv

del
Hv

dwo
S-Hv

dwo
Hybrid

t 182 179 165 192 133

Rand-fcd n 131,745 87,271 125,447 44,346 113,984

s 0 10.7 0.3 0.4 0.2

t 220 237 195 325 176

Random n 151,039 111,768 138,985 67,690 150,706

s 0 12 0.3 0.4 0.2

t 1,629 1,609 1,746 1,594 1,693

Positive n 47,073 27,740 45,108 42,330 47,101

table-8 s 0 4.5 0.3 0.3 0.3

t - 640 625 - 664

Positive n - 0 0 - 0

table-10 s - 100 100 - 100

t 9.5 3.5 4.3 2.2 2.5

Aim n 1,324,118 391,493 547,469 186,262 250,618

s 0 8.6 1.4 2.2 0.5

t 7,771 3.9 3.2 10,768 4

BDD n 36,804 10 10 36,896 10

s 0 56.8 56.8 0.4 56.8

t 4.6 6.2 5.3 5.1 5.4

Chess- n 57,024 61,374 59,390 58,491 65,640

board s 0 2.4 1.4 3.5 1.4

t 63 73 63 67 65

Schurr’s n 559,971 571,976 549,335 492,630 482,396

lemma s 0 8.5 0.6 0.2 0.2

t 934 1,282 936 1,287 1,357

Dubois n 175,325,461 225,836,708 172,724,047 189,160,406 215,484,904

s 0 41.7 1.9 1.7 0.8

t 46 49 48 53 50

Pret n 37,017,710 37,017,710 37,017,710 33,190,315 34,392,941

s 0 18.1 1.7 1.7 0.6

t 118 122 122 - 430

Renault n 801 417 544 - 580

s 0 12.4 7.3 - 8.8

Comparing heuristics Hv
dwo and Hv

del to Hdwo and Hdel, we

can note that the former are more efficient. Although they

restrict the application of the strong consistency by 50% up to

more than 80%, as the percentages s show, this does not incur

any significant increase in node visits while at the same time

cpu effort is saved. In contrast, there are many cases where the

number of node visits is cut down (e.g. random class). These

results show that Hv
dwo and Hv

del achieve a better focus in the

application of the strong consistency.

Finally, the Hybrid method is very competitive on all

classes, except modified Renault, being faster than all other

methods on the random-fcd and random classes. Again it is

interesting that this method ahieves a good performance with

very few invocations of the strong propagator.

Figure 1 summarizes our results by presenting pairwise

comparisons on all tested instances. Figure 1(a) compares the

cpu times of GAC to those of maxRPWC in a logarithmic

scale. Points above (resp. below) the diagonal correspond to

instances that were solved faster by maxRPWC (resp. GAC).

This figure clearly demostrates the performance gap between

1Results of this algorithm are not given because it is not competitive in
cpu times in most cases.

(a) GAC vs. maxRPWC

(b) GAC vs. Hv

dwo

(c) maxRPWC vs. Hv

dwo

Fig. 1. Cpu times of Hv

dwo
compared to GAC and maxRPWC, for all

evaluated instances.

884884

GAC and maxRPWC. GAC is faster on the majority of the

instances, often by large margins, but since it is a weaker

consistency level, it sometimes thrashes, while the stronger

maxRPWC does not. These results justify the need for a robust

method that can achieve a balance between the two.

Figure 1(b) (resp. Figure 1(c)) compares the cpu times

of Hv
dwo to those of GAC (resp. maxRPWC). These figures

clearly demonstrate the benefits of the adaptive heuristics.

Although the majority of the instances is still below the

diagonal in Figure 1(b), they are much closer to it, indicating

small differences between the two methods on those instances.

These are instances where the application of maxRPWC does

not offer any notable reductions in search tree size. By keeping

the number of calls to the maxRPWC propagator low, the

adaptive heuristic manages to avoid slowing down search

considerably. On the other hand, there are still instances where

GAC thrashes while Hv
dwo, following maxRPWC, does not.

In Figure 1(c) most instances are above the diagonal demon-

strating that Hv
dwo, following GAC, is faster than maxRPWC.

On the other hand, there are no instances where Hv
dwo thrashes.

VI. RELATED WORK

As discussed earlier, selecting the appropriate propagator for

a constraint is a problem that is essential to CP and therefore

has attracted a lot of interest. Standard solvers do not use

adaptive methods to tackle this problem. They either preselect

the propagator or use costs and other measures to order the

various propagators. Regarding the second approach, Schulte

and Stuckey describe some state-of-the-art methods which are

used to order propagators by many well known solvers (e.g.

Gecode, Choco) [2].

Automatic CP solver tuning has attracted a lot of interest

recently. Several researchers have approched this problem

through the use of ML methods (e.g. [14], [15]). [3] proposed

the use of reinforcement learning for the dynamic selection of

a variable ordering heuristic at each point of search for CSPs.

Another recent work uses ML to decide prior to search whether

lazy learning will be switched on or off [5]. Closer to the

focus of this paper, there has been little research on learning

strategies for constraint propagation. [4] uses ML methods for

the automatic selection of constraint propagation techniques.

In particular, a static method for the pre-selection between

Forward Checking and Arc Consistency is proposed. [16]

evaluates ensemble classification for selecting an appropriate

propagator for the alldifferent constraint. Again this is done

in a static way prior to search.

Following a different line of work, but with a similar goal,

there are some works proposing heuristic methods to auto-

matically adapt contraint propagation. Apart from [1], we can

mention the following: El Sakkout et al. proposed a scheme

called adaptive arc propagation for dynamically deciding

whether to process individual constraints using AC or forward

checking [17]. Freuder and Wallace proposed a technique,

called selective relaxation which can be used to restrict AC

propagation based on two local criteria; the distance in the

constraint graph of any variable from the currently instantiated

one, and the proportion of values deleted [18]. Probabilistic

arc consistency is a scheme that can dynamically adapt the

level of local consistency applied avoidis some constraint

checks and revisions that are unlikely to cause pruning [6].

VII. CONCLUSION

In this paper we described and evaluated simple heuristics

for the dynamic adaptation of constraint propagation meth-

ods. These are based on the heuristics proposed in [1], but

overcoming the limitations of that work, they are applicable

on constraints of any arity and, importantly, they are fully

automated. Experimental results show that refinements of the

basic heuristics that target the use of strong propagators on

variables that are more likely to be filtered achieve the best

results and outperform the standard method that applies a

fixed propagator throughout search, resulting in most robust

solvers. We believe that this work is a step towards the

efficient exploitation of the filtering power offered by strong

propagators in a fully automated way. In the future we will

examine the applicability of adaptive propagation heuristics

on global constraints with efficient specialized propagators for

domain and bounds consistency.

REFERENCES

[1] K. Stergiou, “Heuristics for Dynamically Adapting Propagation,” in
ECAI-2008, 2008, pp. 485–489.

[2] C. Schulte and P. Stuckey, “Efficient Constraint Propagation Engines,”
ACM Trans. Program. Lang. Syst., vol. 31, no. 1, pp. 1–43, 2008.

[3] Y. Xu, D. Stern, and H. Samulowitz, “Learning Adaptation to solve
Constraint Satisfaction Problems,” in Proceedings of Learning and

Intelligent Optimization (LION), 2009.
[4] S. Epstein, E. Freuder, R. Wallace, and X. Li, “Learning propagation

policies,” in Proceedings of the 2nd International Workshop on Con-

straint Propagation and Implementation, 2005, pp. 1–15.
[5] I. P. Gent, C. Jefferson, L. Kotthoff, I. Miguel, N. C. A. Moore,

P. Nightingale, and K. E. Petrie, “Learning when to use lazy learning in
constraint solving,” in Proceedings of ECAI-2010, 2010, pp. 873–878.

[6] D. Mehta and M. van Dongen, “Probabilistic Consistency Boosts MAC
and SAC,” in Proceedings of IJCAI-2007, 2007, pp. 143–148.

[7] R. Debruyne and C. Bessière, “Domain Filtering Consistencies,” JAIR,
vol. 14, pp. 205–230, 2001.

[8] C. Bessiere, K. Stergiou, and T. Walsh, “Domain filtering consistencies
for non-binary constraints,” Artificial Intelligence, vol. 172, no. 6-7, pp.
800–822, 2008.

[9] C. Schulte and P. J. Stuckey, “When do bounds and domain propagation
lead to the same search space?” ACM Trans. Program. Lang. Syst.,
vol. 27, no. 3, pp. 388–425, 2005.

[10] C. Schulte and P. Stuckey, “Dynamic analysis of bounds versus domain
propagation,” in Proceedings of ICLP ’08, 2008, pp. 332–346.

[11] C. Lecoutre and R. Szymanek, “Generalized arc consistency for positive
table constraints,” in Proceedings of CP’06, 2006, pp. 284–298.

[12] A. Paparrizou and K. Stergiou, “An Efficient Higher-Order Consistency
Algorithm for Table Constraints,” in Proceedings of AAAI-2012, 2012.

[13] C. Bessiére, J. Régin, R. Yap, and Y. Zhang, “An Optimal Coarse-grained
Arc Consistency Algorithm,” Artificial Intelligence, vol. 165, no. 2, pp.
165–185, 2005.

[14] S. Minton, “Automatically Configuring Constraint Satisfaction Pro-
grams: A Case Study,” Constraints, vol. 1, no. 1/2, pp. 7–43, 1996.

[15] S. Epstein and S. Petrovic, “Learning to Solve Constraint Problems,” in
ICAPS-07 Workshop on Planning and Learning, 2007.

[16] L. Kotthoff, I. Miguel, and P. Nightingale, “Ensemble Classification for
Constraint Solver Configuration,” in Proceedings of CP’2010, 2010, pp.
321–329.

[17] H. El Sakkout, M. Wallace, and B. Richards, “An Instance of Adaptive
Constraint Propagation,” in Proceedings of CP-1996, 1996, pp. 164–178.

[18] E. Freuder and R. Wallace, “Selective relaxation for constraint satisfac-
tion problems,” in Proceedings of ICTAI-1996, 1996.

885885

